STUDI IN SILICO PEMBENTUKAN KOKRISTAL MELOXICAM DENGAN BERBAGAI KOFORMER PERBANDINGAN (1 : 1)
DOI:
https://doi.org/10.36387/jiis.v8i1.1086Keywords:
Meloxicam, Coformer, Cocrystal, in silico, Bond energyAbstract
Cocrystal is one form of modification in increasing the solubility of meloxicam which is included in Biopharmaceutics Classifications System (BCS) II. Cocrystal is a multicomponent system with a stoichiometric ratio between the active ingredient and the coformer which are bound in the crystals lattice to form hydrogen bonds. Design of new drugs can be done through an in silico program to optimize the parent compound before the synthesis of derivative compounds. This study aims to predict which coformers are most stable in the formation of crystals. Cocrystal formation is done by drawing a two-dimensional structure from meloxicam and coformer using ChemBioDraw Professional 16.0 software from CambridgeSoft®. The prediction will result in the amount of bond energy formed between meloxicam with coformer. The smaller the bond energy, the more stable the meaning of the bond. The smaller the bond energy formed, the more stable the bond is. Stable bonds have a high probability of forming cocrystals meloxicam. Hydrogen bonds occur between hydrogen atoms and other atoms that have high electronegativities such as O and N atoms which have lone pairs of electrons. This electronegativity difference makes H atoms tightly bound to O and N atoms so that the hydrogen bonds in the meloxicam cocrystal are tightly bound and stable. From the results of the study showed that the most stable coformer can form cocrystals with a small bond energy that can produce bonds with meloxicam, namely urea.
References
Bare, Y., Sari, D. R., Rachmad, Y. T., Tiring, S. S. N. D., Rophi, A. H., & Nugraha, F. A. D., 2019, Prediction potential chlorogenic acid as inhibitor ace (in silico study), Bioscience, 3(2), 197.
Berry, D. J., & Steed, J. W. 2017, Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design, Advanced drug delivery reviews, 117, 3-24.
Bhardwaj, S., Lipert, M., & Bak, A. 2017, Mitigating cocrystal physical stability liabilities in preclinical formulations, Journal of Pharmaceutical Sciences, 106(1), 31-38.
Chandramouli, Y., Gandhimathi, R., Yasmeen, B. R., Vikram, A., Mahitha, B., & Imroz, S. M., 2012, Review on cocrystal as an approach with newer implications in pharmaceutical field, Int J Med Chem Anal, 2(2), 91-100.
Departemen Kesehatan RI, editor, 2014, Farmakope Indonesia, Edisi Ke-5, Departemen Kesehatan RI, Jakarta.
Devne, S. R., Kapse, V. N., & Ingale, P. L., 2019, Cocrystal: A Review On Pharmaceutical Corystals Design And Preparation, World Journal Of Pharmaceutical Research, 8(7), 1936-1950.
Docherty, R., Pencheva, K., & Abramov, Y. A., 2015, Low solubility in drug development: de-convoluting the relative importance of solvation and crystal packing, Journal of Pharmacy and Pharmacology, 67(6), 847-856.
Hardjono, S., 2012, Modifikasi Struktur 1-(Benzoiloksi)urea dan Hubungan Kuantitatif Struktur-Aktivitas Sitotoksiknya, Universitas Airlangga, Disertasi, Surabaya.
Hamzah, H. A., Ernanto, J. H., Afladhanti, P. M., & Theodorus, T., 2022, Potensi Daun Teh Hijau (Camellia Sinensis) Sebagai Inhibitor Main Protease (Mpro) Covid-19: Sebuah Studi Molecular Docking, Jurnal Ilmiah Ibnu Sina, 7(2), 212-222.
Hairunisa, I., Normaidah, N., Ressandy, S. S., & Azhari, F., 2019, Identifikasi Dan Molecular Docking Komponen Utama Minyak Kulit Buah Jeruk Nipis Sebagai Agen Antikanker, Jurnal Ilmiah Ibnu Sina, 4(2), 314-322.
Jouyban, A, editor, 2010, Handbook of Solubility Data for Pharmaceutical. NewYork: CRCPress Taylor & Francis Group, LLC, pp.382
Kothur, Raghuram Reddy, 2012, An Outline of Crystal Engineering of Pharmaceutical Co-Crystal and Applications: A Review, International Journal Of Pharmaceutical Research and Development (IJPRD), 4(08),84-92.
Lahdimawan, A., Bulan, S. A., Suhartono, E., & Setiawan, B., 2022, Dampak kadmium dan merkuri terhadap metabolisme karbohidrat: kajian in silico pada enzim glikogen sintase dan fosfofruktokinase, Jurnal Ilmiah Ibnu Sina, 7(1), 109-115.
Muttaqin, F. Z., Astuti, W. A. P., Febrina, E., & Asnawi, A., 2019, Penapisan Virtual Berbasis Struktur Dari Database Bahan Alam Zinc Sebagai Inhibitor Bruton Tyrosine Kinase, Jurnal Ilmiah Ibnu Sina, 4(2), 400-409.
Najih, Y. A., Widjaja, B., Riwanti, P., & Mu'alim, A. I., 2018, Characterization of Meloxicam and Malonic Acid Cocrystal Prepared With Slurry Method, Journal of Islamic Pharmacy, 3(2), 51-58.
Najih, Y. A., Widjaja, B., Rakhma, D. N., & Satrio, A., 2022, Uji Disolusi Kokristal Meloksikam dan Asam Malonat Sebagai Koformer Dibuat dengan Metode Slurry, Journal of Pharmaceutical Care Anwar Medika (J-PhAM), 5(1), 25-36.
O` Neil M.J., 2006, The Merck Index, Merck Sharp and Dohme Corp, a susidiary of Merck Index and Co, Inc, New York.5827
Radhi, A. A., & Jaafar, I. S., 2022, Factors influencing the dissolution behavior of meloxicam dispersions, Journal of Advanced Pharmacy Education & Research, 12(3), 9-14.
Susanti, S., Sukmawaty, E., & Masriany, M., 2021, Penambatan Molekuler Senyawa Cendawan Endofit Trichoderma sp. sebagai Inhibitor Protein Low Density Lipoprotein, Enzim Lanasterol 14-Α Demetilase dan Lipase yang Bertanggung Jawab dalam Dermatitis Seboroik, Jurnal Ilmiah Ibnu Sina (JIIS): Ilmu Farmasi dan Kesehatan, 6(1), 98-107.
Sweetman S.C., 2009, Martindale The Complete Drug Reference, 36th Ed, London: The Pharmaceutical Press,81.
Tumanov Nikolay A., Svetlana A, Myz., Tatyana P., Shakhtshneider and Elena V, Boldyreva, 2012, Are Meloxicam Dimers Really The Structure-Forming Units In The Meloxicam-Carboxylic Acid Co-Crystal Relation Between Crystal Structures and Dissolution Behavior, CrystEngComm, 14(1), 305-313.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Ilmiah Ibnu Sina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
